吸塑盒、一体化循环包装箱搬迁扩建项目 竣工环境保护验收监测报告表

建设单位:南京海世达包装有限公司

编制单位:南京海世达包装有限公司

二〇二五年八月

建设单位法人代表: (签字)

编制单位法人代表: (签字)

项目负责人:

填 表 人:

	建设单位	编制单位
名称	南京海世达包装有限公司(盖章)	南京海世达包装有限公司(盖章)
电话	13675107285	13675107285
传真	/	/
邮编	210000	210000
地址	江苏省南京市六合区龙袍街道东	江苏省南京市六合区龙袍街道东沟
	沟四桥经济园府前南路	四桥经济园府前南路

建设项目名称建设单位名称建设项目性质建设地点		一体化循环包装箱 南京海世达包装有[新建 √改扩建					
建设项目性质建设地点			X A B				
建设地点	 江苏省南京市 /						
	新建 √改扩建 技改 工苏省南京市六合区龙袍街道东沟四桥经济园府前南路						
一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	江苏省南京市六合区龙袍街道东沟四桥经济园府前南路 吸塑盒、一体化循环包装箱						
主要产品名称	吸塑盒、一体化循环包装箱						
设计生产能力	年产 1000 万个吸塑盒、100 万套一体化循环包装箱						
实际生产能力	吸塑盒 1000 万个,一体化循环包装箱 100 万套 2023.05 开工建设时间 2023.08						
建设项目 环评时间							
调试时间	2023.11	验收现场监测 时间	2025年6 2025年	月16日 7月17			
环评报告表 审批部门	南京市生态环境 局	环评报告表编制 单位	江苏久之	之源环境 限公司	科技有		
环保设施设计 单位	武邑洁雅森环保 设备有限公司	环保设施施工单 位	武邑洁雅森环保设备有 限公司		设备有		
投资总概算	2000 万元	环保投资总概算	50万元	比例	2.5%		
实际总概算	2000 万元	环保投资	40万元	比例	2.0%		
验收监测依据	修改单; (2) 《地表水环境 (3) 《声环境质量 (4) 《工业企业厂 (5) 《污水综合排 (6) 《污水排入城 (7) 《一般工业區 18599-2020); (8) 《危险废物贮 (9) 《危险废物贴 (10) 《危险废物贴	适量标准》(GB 30 适质量标准》(GB 3096- 一界环境噪声排放标 主放标准》(GB 897 这镇下水道水质标准 四体废物贮存和填 一个方染控制标准》 一个方染控制形成形成形成形成形成形成形成形成形成形成形成形成形成形成形成形成形成形成形成	3838-2002 2008); 准》(GE 78-1996) 》(GB 3 埋污染控 (GB 185 范》(HJ 术规范》(建设部令第); 3 12348-2 ; 1962-20 制标准) 97-2023 1276-20 HJ 2025 等 157 号	2008); 15); (GB); (22); (-2012);		

- (13) 《国务院关于修改〈建设项目环境保护管理条例〉的决定》(国务院〔2017〕682号,2017年10月);
- (14)《江苏省排污口设置及规范化整治管理办法》(原江苏省环保局,苏环控〔1997〕122号文,1997年9月21日):
- (15) 《关于印发建设项目竣工环境保护验收现场检查及审查要点的通知》(环办〔2015〕113号,2015年12月30日);
- (16) 《排污单位自行监测技术指南总则》(HJ 819-2017)
- (17) 《排污单位自行监测技术指南 橡胶和塑料制品工业》 (HJ 1207—2021)
- (18) 关于发布《建设项目竣工环境保护验收暂行办法》的公告(国环规环评(2017) 4号):
- (19) 关于发布《建设项目竣工环境保护验收技术指南 污染影响类》的公告(生态环境部公告 第9号);
- (20)《关于印发〈污染影响类建设项目重大变动清单(试行)〉的通知》(环办环评函(2020)688号);
- (21)《省生态环境厅关于加强涉变动项目环评与排污许可管 理衔接的通知》(苏环办〔2021〕122号);
- (22)《关于建设项目竣工环境保护验收有关事项的通知》(苏环办〔2018〕34号);
- (23)《吸塑盒、一体化循环包装箱搬迁扩建项目环境影响报告表》(江苏久之源环境科技有限公司,2023年5月);
- (24)《关于吸塑盒、一体化循环包装箱搬迁扩建项目环境影响报告表的批复》(宁环(六)建〔2023〕21号)

根据报告表及审批意见要求,执行以下标准:

1、废气排放标准

项目生产过程中有组织非甲烷总烃、苯乙烯、丙烯腈、甲苯、乙苯、1.3-丁二烯废气排放执行《合成树脂工业污染物排放标准》(GB31572-2015) 中表 5 特别排放限值; 无组织非甲烷总烃、甲苯排放执行《合成树脂工业污染物排放标准》(GB31572-2015)表 9 边界大气污染物限值标准,同时非甲烷总烃无组织排放在厂区内厂房外执行《大气污染物综合排放标准》(DB32/4041-2021)表 2 厂区内 VOCs 无组织排放限值,具体标准见下表。

表 1-1 本项目废气污染物排放标准

验收监测评价 标准、标号、 级别、限值

> >+-	最高允许	最高允 许排放	116-4-2-62-	无组织排放 值	浓度限	L VA+-
万染 因子	排放浓度 (mg/m³)	速率 (kg/h)	监控位 置	监控浓度 限值 (mg/m³)	监控 位置	标准来 源
非甲 烷总 烃	60	3		4. 0	边外 東 東 高 点	 《合成 树脂工
苯乙 烯	20	/	· 车间排	/	/	业污 染 物排放
丙烯 腈	0.5	/	一年间排 气筒出 口或生	/	/	标准》 (GB315
甲苯	8	/	产设施 排气筒 出口	0.8	周外 液 最 高	72-2015)、《大 气污染 物综合 排放标
乙苯	50	/		/	/	准》
1, 3-丁 二烯	1	/		/	/	(DB32/ 4041-20 21)
单位产	品非甲烷总 品	0.3				

表 1-2 厂区内非甲烷总烃无组织排放限值

污染物名	无组织排放监控剂	依据	
称	监控点	浓度 mg/m³	
非甲烷总 烃	监控点1h平均浓度值	6	《大气污染物综合排放标 准》

监控点任意一次浓度 值	20	(DB32/4041-2021)
----------------	----	------------------

2、废水排放标准

生活污水经化粪池处理后达到《污水综合排放标准》 (GB8978-1996)表 4 中三级标准, 其中 TP、NH₃-N、TN 执行《污水排入城镇下水道水质标准》(GB/T 31962-2015)中 B 等级标准后接管市政管网排至东沟污水处理厂集中处理达《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准中 A 标准后排入新禹河,最终汇入滁河。具体值见下表。

表 1-3 污水接管标准 单位: mg/L, pH 无量纲

序号	污染物	接管标准浓度值	标准来源
1	рН	6~9	《污水综合排放标准》
2	COD	500	(GB9879-1996)表4中
3	SS	400	的三级排放标准
4	NH3-N	45	《污水排入城镇下水道
5	TP	4	水质标准》
6	TN	70	(GB/T31962-2015)中 B 等级标准

表 1-4 污水处理厂排放标准 单位: mg/L, pH 无量纲

序号	污染物	接管标准浓度值	标准来源
1	рН	6~9 (无量纲)	
2	COD	≤50	《城镇污水处理厂
3	SS	≤10	污染物排放标准》
4	NH3-N	≤5	(GB 18918-2002)
5	TP	≤0.5	一级 A 标准要求
6	TN	≤15	

3、噪声排放标准

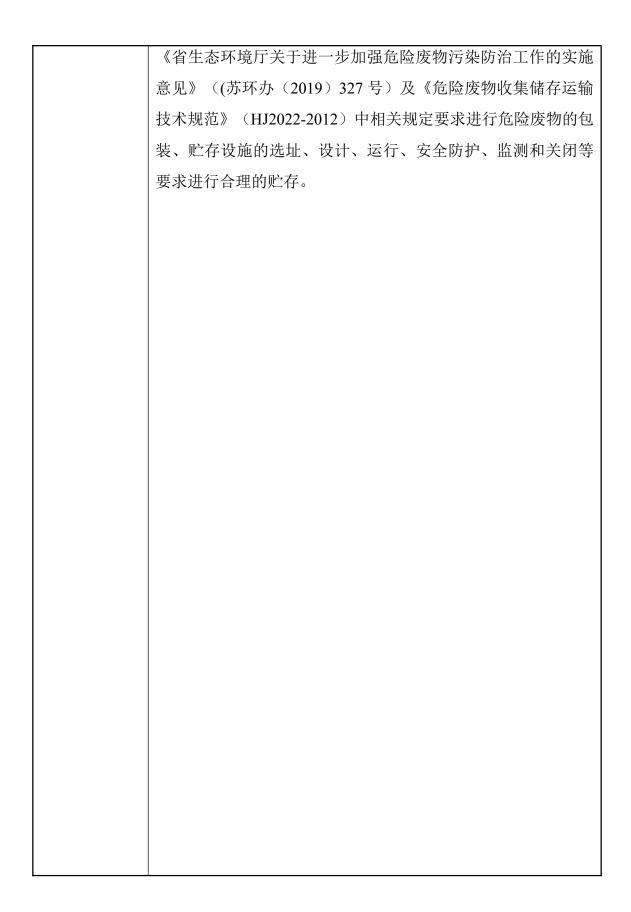

本项目营运期厂界噪声执行《工业企业厂界噪声排放标准》 (GB 12348-2008)中3类标准,具体标准值见下表。

表 1-5 厂界噪声排放标准值 单位: dB(A)

类别	昼间	夜间	标准来源
	65	5.5	《工业企业厂界环境噪声排放标准》
3	03	55	(GB 12348-2008)

4、固废污染控制标准

一般工业固体废物贮存执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2021)中相关要求:危险废物贮存执行《危险废物贮存污染控制标准》(GB18597-2023)、

工程建设内容:

1、项目概况

南京海世达包装有限公司成立于 2012 年 4 月,注册地址位于南京市六合区 东沟镇南京四桥经济园内标房东区 1 栋。2012 年 8 月,委托江苏绿源工程设计 研究有限公司编制《聚丙烯中空板加工项目环境影响报告表》,2012 年 9 月 5 日取得南京市六合区环境保护局批复(六环表复〔2012〕048 号)。聚丙烯中空 板加工项目 2012 年 10 月建设投产至 2012 年 12 月底,由于市场变动,聚丙烯中空 板加工项目 2012 年 12 月底停止生产并拆除生产设备。2019 年 9 月公司委托 江苏新清源环保有限公司编制《年产 1000 万个吸塑盒项目环境影响报告表》,于 2019 年 10 月 28 日取得南京市生态环境保护局批复(宁环表复〔2019〕1637 号)。2020 年取得了排污许可登记回执,登记编号:913201165935177762002X。2021 年 2 月项目进行了阶段性竣工环境保护验收,并于 2021 年 2 月 21 日取得了《南京海世达包装有限公司年产 1000 万个吸塑盒项目竣工环境保护验收意见》。

因企业发展需要,2023 年收购南京诚善科技有限公司标准厂房,位于南京市六合区龙袍街道南京四桥经济园 6#标房,投资 2000 万元建设吸塑盒、一体化循环包装箱搬迁扩建项目,本次搬迁为整体搬迁,原厂址设备拆除不再生产。2023年 5 月委托江苏久之源环境科技有限公司编制《吸塑盒、一体化循环包装箱搬迁扩建项目环境影响报告表》,2023年 7 月 7 日取得南京生态环境局批复(宁环(六)建〔2023〕21号),2024年 3 月 6 日取得变更排污许可登记回执,登记编号:913201165935177762002X,本项目于2023年 8 月开工建设,2025年 5 月竣工并调试。本次验收中吸塑盒生产及一体化循环包装箱生产,因企业生产建设规划和生产工艺调整,生产中与破碎工序相关的内容均取消,不再建设。目前各项环保设施的建设均已按照设计要求与工程同时建设,运行情况良好,具备验收监测条件。

根据《建设项目竣工环境保护验收暂行办法》(国环规环评〔2017〕4号〕 等文件的要求,南京海世达包装有限公司于2025年6月对本项目所产生的废气、 废水、噪声、固体废弃物等污染源排放现状和各类环保治理设施的建设运行情况 进行了现场勘查,并在检查、收集和查阅有关资料的基础上,编制了竣工环境保护验收监测方案,并委托江苏国测检测技术有限公司于 2025 年 6 月 16 日~17 日按验收监测方案对南京海世达包装有限公司进行了"三同时"验收监测,根据监测结果及相关环境问题现场检查情况,编制了本项目竣工环保验收监测报告。

本项目不设食堂和员工宿舍,搬迁扩建后全厂职工 90 人,设备生产运作时间为每天 8 小时,年工作 300 天,年运行时间 2400 小时。本项目主体工程及项目产品方案、主要生产设备及公辅、环保工程及原辅材料见下表相关内容。

2、工程建设内容

表 2-1 项目产品方案

序号	工程名称	产品名称	设计生产能力	现阶段实际生产能力	年运行时数(h/a)
1	吸塑盒生产线	吸塑盒	1000 万个/年	1000 万个/年	2400h
2	一体化循环包 装箱生产线	一体化循环 包装箱	100 万套/年	100 万套/年	2400h

项目主体工程、贮运、辅助、公用及环保工程见表2-2

表 2-2 工程设计和实际建设内容一览表

类别	工程名称	环评设计	实际建设	备注
主体工程	生产车间	6600m ²	6600m ²	未变化
贮运工程	仓库	1000m ²	$1000m^2$	未变化
	给水	1350t/a	1350t/a	未变化
公用工程	排水	1147. 5t/a	1147. 5t/a	未变化
	供电	20 万度/年	20 万度/年	未变化
	生活垃圾	环卫清运	环卫清运	未变化
	一般固废	50m ² 一般固废库	50m ² 一般固废库	未变化
	危险废物 15m	15m ² 危废暂存库	6m ² 危废暂存库	本项目仅产生废活性 炭及废催化剂两种固 态危废,产生量较小
	废水处理	化粪池	化粪池	未变化
环保工程	废气处理	吸塑、注塑废气经活性炭吸附脱附+催化燃烧处理后由 15 米高 DA001、粉碎废气经布袋除尘器处理后由 15 米高 DA002 排气筒排放	吸塑、注塑废气经活性 炭吸附脱附+催化燃烧 处理后由 15 米高 DA001 排气筒排放, 破碎工艺取消,不再建设,与破碎相关的布袋 除尘器、DA002 排气 筒也不再建设	

本项目主要设备清单见表 2-3:

表 2-3 项目主要生产设备一览表

序号	设备名称	环评数量(个)	实际数量(个)	变化量	备注
1	平台模切机	3	2	-1	用于模切、裁边
2	吸塑机	7	4	-3	用于吸塑盒三 用一备

3	注塑机	4	4	0	用于一体化循 环包装箱
4	破碎机	2	0	-2	工艺取消,设备 取消
5	一体化全自动 正负压自切一 体机	1	1	0	用于吸塑

3、劳动定员及作业制度

本项目劳动定员90人,年工作时间为300天,单班制,每班8h,年运行2400h。

4、原辅材料消耗

本项目主要原辅材料消耗见下表。

表 2-4 主要原辅材料一览表

序号	产品	名称	主要成分、规格和性状	环评使用量 (t/a)	实际使用量 (t/a)	备注
1	吸塑盒	PET	聚对苯二甲酸乙二酯	3000		实际用量包含破碎工艺取消后,增加90t/a原辅材料
2	一体化循环包装箱	ABS	丙烯腈-丁二烯-苯乙烯 共聚物	2100	2100	实际用量包含破碎工艺取消后,增加60t/a的原辅材料
3	EPE 包装 材料	EPE 包装 材料	可发性聚乙烯	100	100	未变化

5、水源及水平衡

本项目正常运营时的水平衡见图 2-1



图 2-1 项目水平衡图 单位: m³/a

本项目平面布置图见图 2-2

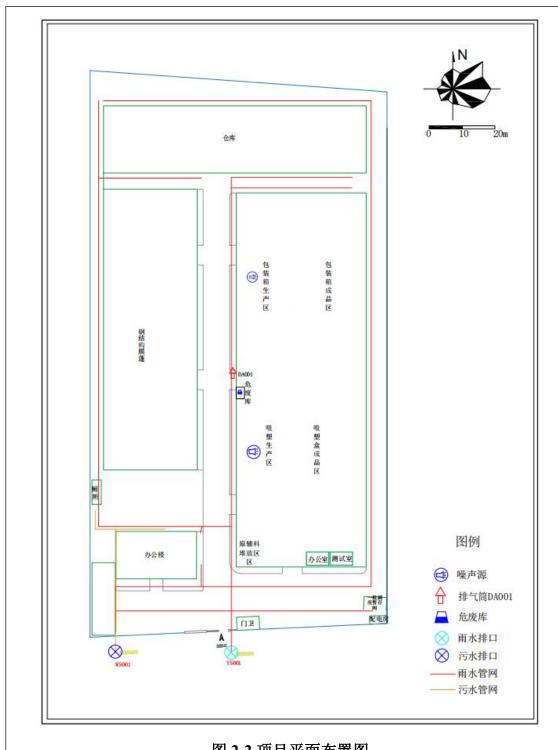


图 2-2 项目平面布置图

3、主要工艺流程及产污环节(附处理工艺流程图,标出产污节点)

(1) 吸塑盒生产工艺流程图

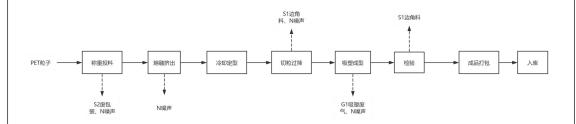


图 2-3 吸塑盒生产工艺流程图

工艺流程简述:

- 1) 称重投料:使用集中供料系统、自动加料机失重称等设备将 PET 塑料粒子根据客户需要以一定的比例称量好后,通过密闭管道吸料。塑料粒子均为颗粒状,因此不会产生粉尘。此工会产生废包装袋 S2 及噪声 N。
- 2)熔融挤出:原辅料投料后,挤出机对原料进行加热熔融后挤出,熔融挤出度为电加热约250℃,每批产品(每批次4t)挤出加热时长为60min。该工序产生噪声 N。
 - 3)冷却定型:挤出后的半成品自然冷却成型,以便于后期的加工和使用。
- 4) 切粒过筛:冷却后的半成品在通过切粒机切粒,粒子经过振动筛进行尺寸筛选。该工序产生废边角料 S1、噪声 N。
- 5) 吸塑成型: 切粒后,每个批次(每批次4t)的产品抽取30g粒子人工加入塑料注塑成型机中,通过机器内部高温电加热到250℃左右,加热40min使颗粒状塑料粒子成熔融状态后通过动力推入外购模具中成型。此工序产生吸塑废气G1、噪声N。
- 6) 检验:使用实验检验设备对注塑成型后的检验条块进行冲击、拉力等检验。此工序产生废边角料 S1。

(2) 一体化循环包装箱生产工艺流程

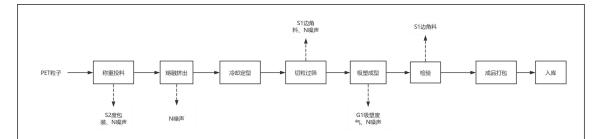


图 2-4 一体化循环包装箱工艺流程图及产污环节

工艺流程简述:

- 1)称重投料:使用集中供料系统、自动加料机失重称等设备将 PET 塑料粒子根据客户需要以一定的比例称量好后,通过密闭管道吸料。塑料粒子均为颗粒状,因此不会产生粉尘。此工序会产生废包装袋 S2 及噪声 N。
- 2)熔融挤出:原辅料投料后,挤出机对原料进行加热熔融后挤出,熔融挤出度为电加热约250℃,每批产品(每批次4t)挤出加热时长为60min。该工序产生噪声 N。
 - 3)冷却定型:挤出后的半成品自然冷却成型,以便于后期的加工和使用。
- 4) 切粒过筛:冷却后的半成品在通过切粒机切粒,粒子经过振动筛进行尺寸筛选。该工序产生废边角料 S1、噪声 N。边角料经破碎机破碎后作为原料回用于生产。此过程会产生粉碎粉尘 G3 及噪声 N。
- 5)注塑成型:切粒后,每个批次(每批次4t)的产品抽取30g粒子人工加入塑料注塑成型机中,通过机器内部高温电加热到250℃左右,加热40min使颗粒状塑料粒子成熔融状态后通过动力推入外购模具中成型。此工序产生注塑废气G2、噪声N。
- 6)检验:使用实验检验设备对注塑成型后的检验条块进行冲击、拉力等检验。此工序会产生废边角料 S1。

4、项目变动情况说明

本项目实际建设与环评及批复要求存在变动,主要变动情况具体如下:

表 2-5 项目变动情况一览表

序号	变动属性		变动属性 环评内容		变动内容
1	平面布置	功能 分区 变动	①生产区 一体化循环包装箱生 产区位于厂房东半侧, 西半侧全部为预留的 吸塑盒生产区	一体化循环包 装箱生产区位于厂 房西北侧,吸塑盒 生产区位于厂房西 南侧	仅位置发生 变动,建筑使 用功能不变

_						
		发生		②原料区 位于厂房内东北角	位于厂房内西 南角	
变 化		③固废贮存区 a 危废库位置: 位于厂 房内东南角 b 一般固废暂存间位 置: 位于厂房内东南角	危废库位于厂房外 西侧;一般固废暂 存间位于厂房外东 南角			
				④排气筒位置变动 位于厂房东侧	位于厂房西侧	
			固	危废库面积为 15m ²	危废库面积为 6m²。	面积减少 9m²
	2	· ·	工艺发 变动	有破碎工序,用于边角 料破碎回用	破碎工序取消	破碎工序取 消
	3 生产设备变动		动	破碎机2台、吸塑机7台、模切机3台,集气罩11个	破碎机取消、 吸塑机为4台、平 台模切机为2台, 集气罩为8个	破碎机取消, 吸塑机减少3 台,模切机减 少1台,集气 罩减少3个
	破相的袋尘DA002 环境保护措施发生变动 环境保护措施发生变动		相关 的 袋、 2 NA002 排气 管	破碎粉尘经集气罩收集+布袋除尘器处理 后通过 15 米高排气简 (DA002)排放。	破碎工序取消,集气罩收集+布袋除尘器+15米高排气简(DA002)取消。	破碎工序取 消,与破碎相 关的粉尘不 再产生,相关 的废气处理 设施不 设
			固カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ	边角料破碎回用	边角料收集后 统一外售	破碎工序取 消
			固废 种类 发生 变动	边角料、废布袋、布袋 收集粉尘、废包装材料	边角料、废包 装材料	固废产生种 类减少,减少 了废布袋、布 袋收集粉尘
污染物排放 总量发生变 动		有组织颗粒物排放量: 0.0027t/a、无组织颗粒 物 0.006t/a。	颗粒物不再产 生	颗粒物不再 产生,污染物 排放总量减 少		
1 3	3.7 与重-	上亦ᆕ	P/军 央 4/4	小小 北丰		

3.3.7 与重大变动清单对比分析表

表 2-6 对照环办环评函〔2020〕688 号内容分析

	次20/1/1/1/1/1 日 (2020/ 000 111日分刊					
类别	环办环评函[2020]688 号	原环评内容和要求 	实际建设内容	变动内容及变动原因	是否属于 重大变动	
性质	1、建设项目开发、使用功能发生 变化的	搬迁扩建:吸塑盒和一体化 循环包装箱	搬迁扩建:吸塑盒和一体化循环包装箱	无变动	否	
	2、生产、处置或储存能力增大 30%及以上。			无变动	否	
	3、生产、处置或储存能力增大, 导致废水第一类污染物排放量增加 的。	/	/	不涉及	否	
规模	4、位于环境质量不达标区的建设项目生产、处置或储存能力增大,导致相应污染物排放量增加的(细颗粒物不达标区,相应污染物为二氧化硫、氮氧化物、可吸入颗粒物;臭氧不达标区,相应污染物为氮氧化物、挥发性有机物;其他大气、水污染物因子不达标区,相应污染物为超标污染因子);位于达标区的建设项目生产、处置或储存能力增大,导致污染物排放量增加10%及以上的。	原辅材料: PET: 3000t/a; ABS: 2100t/a, 产能: 吸塑盒 1000 万个和一体化循环包装箱 100 万个	原辅材料: PET: 3000t/a; ABS: 2100t/a, 产能: 吸塑 盒 1000 万个和一体化循环包 装箱 100 万个	无变动	否	
地点	5、重新选址;在原厂址附近调整	江苏省南京市六合区龙袍街道东 沟四桥经济园府前南路	江苏省南京市六合区龙袍街 道东沟四桥经济园府前南路	无变动	否	

	(包括总平面图布置变化)导致环境防护距离变化且新增敏感点的。	功区	①生产区 一体化循环包装箱生产区位于厂房东半侧,西半侧全部为预留的吸塑盒生产区 ②原料区位于厂房内东北角 ③固废贮存区。6废库位置:位于厂房内东南角。10分割,位于厂房内东南角。10分割,位于厂房内东南角。10分割,位于厂房内东南角。10分割,15m²	①生产区 一体化循环包装箱生产区位于厂房西北侧,吸塑盒生产区位于厂房西南侧 ②原料区位于厂房内西南角 ③固废贮存区危废库位于厂房外西侧;一般固废暂存间位于厂房外东南角	仅位置发生变化,使 用功能不变,未导致 环境防护距离变化且 未新增敏感点	否
生产工艺	6、新增产品品种或生产工艺(含主要生产装置、设备及配套设施)、主要原辅材料、燃料变化,导致以下情形		· 萨工序,用于边角料破碎	破碎工序取消	因企业生产建设规划 和生产工艺调整,原 环评中边角料破碎回 用,实际边角料收集 后统一外售,不再破 碎回用,因此破碎工 艺取消	否

	之一: (1)新增排放污染物种类的(毒性、挥发性降低的除外); (2)位于环境质量不达标区的建设项目相应污染物排放量增加的; (3)废水第一类污染物排放量增加的; (4)其他污染物排放量增加 10%及以上的。	破碎机2台、吸塑机7台、 模切机3台	破碎机取消、吸塑机为4台、平台模切机为2台。	破碎工艺取消,破碎 相关的设备取消; 吸塑机的型份化, 吸塑机行了优在变量的 理能力提升,持期, 对力, 材料用量。 材料用量。 数料用于后域的 说是升,对用于后域切 以工序的降, 以工序的降, 以工序的降, 以工, 以工, 以工, 以工, 以工, 以工, 以工, 以工, 以工, 以工	否
	7、物料运输、装卸、贮存方式变化,导致大气污染物无组织排放量增加10%及以上的。	/	/	无变动	否
环境 保护 措施	8、废气、废水污染防治措施变化,导致第6条中所列情形之一(废气无组织排放改为有组织排放、污染防治措施强化或改进的除外)或大气污染物无组织排放量增加10%及以上的。	废气:注塑、吸塑废气通过 活性炭吸附脱附+催化燃烧处理 后由15m排气筒(DA001)排放; 粉碎废气经布袋除尘器处理后由 15 米高 DA002 排气筒排放,废 水:生活污水经化粪池预处理后 接管至东沟污水处理厂。	废气:注塑、吸塑废气通过活性炭吸附脱附+催化燃烧处理后由15m排气筒(DA001)排放;破碎工艺取消不再建设,破碎相关的废气处理设施、设备取消,粉碎废气不排,布袋除尘器+15米高DA002排气筒不再建设。	因企业生产建设规划 和生产工艺调整,破 碎工艺取消	否

9、新增废水直接排放口;废水由间接排放改为直接排放;废水直接排放口位置变化,导致不利环境影响加重的。			不涉及	否
10、新增废气主要排放口(废气 无组织排放改为有组织排放的除外); 主要排放口排气筒高度降低 10%及以 上的。	本次吸塑、注塑产生的有机 废气设置一根 15m 高排气筒,粉 碎粉尘设置一根 15 米高 DA002 排气筒。	本次吸塑、注塑产生的有机 废气设置一根 15m 高排气筒	破碎工序取消,与破 碎相关的内容取消	否
11、噪声、土壤或地下水污染防	噪声:采用低噪声设备、合理布局、减振基础、等降噪措施	采用低噪声设备、合理布局、 减振基础、等降噪措施	无变动	否
治措施变化,导致不利环境影响加重 的。	土壤、地下水:厂内重点区域地下水、土壤污染防治采取的防渗防腐设施;	土壤、地下水: 厂内重点区域地下水、土壤污染防治采取的防渗防腐设施;	无变动	否
12、固体废物利用处置方式由委托外单位利用处置改为自行处置的(自行处置设施单独开展环境影响评价的除外);固体废物自行处置方式变化,导致不利环境影响加重的。	一般固废:边角料破碎回收、 废布袋、布袋收集粉尘、废包装 材料统一收集外售;危废:废催 化剂、废活性炭委托有资质单位 处置。	一般固废:边角料、废包装材料统一收集外售;危废:废催化剂、废活性炭委托有资质单位处置。	企业生产建设规划和 生产工艺调整,破碎 工艺取消,原环评中 边角料破碎回用,实 际边角料收集后统一 外售,不再破碎回用	否
13、事故废水暂存能力或拦截设 施变化,导致环境风险防范能力弱化 或降低的。	/	/	无变动	否

通过上表可知, 通过上表可知, 项目发生上述变动后, 未导致新增污染因子或污染物排放量、范围或强度增加, 未导致环境影响或环境 风险增大, 本项目的变动不属于重大变动范畴, 属于一般变动。

主要污染源、污染物处理和排放

(1) 废气

本项目注塑、吸塑过程产生的有机废气(非甲烷总烃、苯乙烯、丙烯腈、甲苯、乙苯、1,3-丁二烯)经集气罩收集后,通过活性炭吸附脱附+催化燃烧装置处理,经15m高排气筒 DA001排放。本项目破碎工序取消,与破碎相关的废气处理设施、设备取消,破碎产生的颗粒物不再排放。项目废气排放执行《合成树脂工业污染物排放标准》(GB31572-2015)表5特别排放标准。

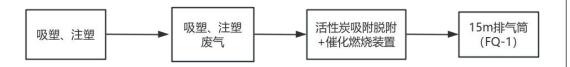


图 3-1 废气污染防治措施

(2) 废水

本项目产生的废水为生活污水,生活污水经化粪池预处理后通过园区污水管 网排放至东沟污水处理厂处理,尾水排入新禹河。

(3) 噪声

本项目涉及的噪声源主要来自吸塑机、注塑机、风机等设备运行时产生的的噪声,噪声源强为75-80dB(A)之间。项目高噪声设备可通过厂房隔声、基础减振、消音及距离衰减后等措施降低噪声。

(4) 固废

本项目产生的固体废物有一般固废、危险废物及生活垃圾。

一般固废:边角料、废包装材料均外售利用。

危险废物:废活性炭、废催化剂均委托有资质单位处置。

本项目危险废物暂存于厂房外西侧面积为 6m² 的危险废物仓库,该仓库符合《危险废物贮存污染控制标准》(GB18597-2023)。

生活垃圾: 本项目产生的生活垃圾由环卫部门清运。

建设项目产生的固体废物统计见下表:

表 3-1 固废排放及防治措施

编号	废物名称	属性	废物代码	处理设施		
<i>9</i> m 5	及 物石物	周江	及10711月	环评要求	实际建设	

1	边角料		SW99- 15	破碎后回用	外售处理	
2	废布袋	一般固废	/	外售处理	不再产生	
3	布袋收集粉尘	双凹波	SW99- 10	外售处理	不再产生	
4	废包装材料		SW99- 15	外售处理	外售处理	
5	废催化剂		HW50		江苏格润合	
	/发展10/13	左 7人 床 #m	900-049-50	委托有资质	美再生资源	
6	 废活性炭	危险废物	厄应废物	HW49	单位处置	有限公司处
	及伯丘灰		900-039-49		置	
			SW64	TT T >= >=		
7	生活垃圾	生活垃圾	900-001-S62/	环卫清运	环卫清运	
			900-002-S62			

危废信息公示牌

贮存设施标示牌

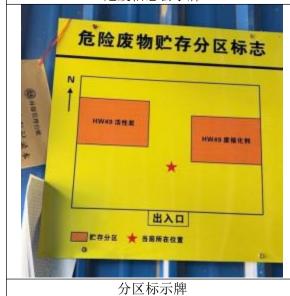


图3-2 危废库设置情况

危废库内部监控

排污口规范化检查:

废气排放口图形标志已按环境保护图形标志-排放口(源)(GB 15562.1-1995) 标准落实。

图 3-3 废气设施

废水排放口图形标志已按环境保护图形标志-排放口(源)(GB 15562.1-1995) 标准落实。

图 3-4 废水排口标识牌

建设项目环境影响报告表主要结论及审批部门审批决定:

1、建设项目环境影响报告表主要结论

建设项目符合国家及地方产业政策要求;符合当地总体规划;各项污染治理得当,经有效处理后可保证污染物稳定达到相关排放标准要求,对外环境影响不大,不会降低区域功能类别,并能满足总量控制要求。因此,从环保的角度看,本项目在拟建地建设是可行的

2、审批部门审批结论

南京海世达包装有限公司:

你单位报批的《吸塑盒、一体化循环包装箱搬迁扩建项目环境影响报告表》 (以下简称《报告表》)收悉,根据环评结论,并经局项目审查小组会议研究, 从环境保护角度考虑,批复如下:

- 一、项目地址位于六合区龙袍街道南京四桥经济园府前南路,建设单位拟将现有吸塑盒项目由南京四桥经济园 1#厂房整体搬迁至南京四桥经济园 6#厂房,同时新增注塑机等设备 10 台(套),扩建一体化循环包装箱生产线。项目建成后可形成年产 100 万套一体化循环包装箱和 1000 万个吸塑盒。项目总投资 2000 万元,其中环保投资 50 万元。
- 二、在项目工程设计、建设、运行以及环境管理中,你单位须严格落实《报告表》提出的各项污染防治措施和生态保护措施,严格执行环保"三同时"制度,确保各类污染物稳定达标排放,重点做好以下工作:
- 1、落实水污染防治措施。项目排水系统实施雨污分流,设雨污水排口各一个。生活污水经化粪池处理达接管标准后经园区污水管网排入龙袍街道东沟污水处理厂集中处理。
- 2、落实大气污染防治措施。项目吸塑、注塑工艺产生的有机废气经集气罩 收集+活性炭吸附脱附+催化燃烧装置处理后通过 1#15 米高排气简排放; 破碎粉 尘经集气罩收集+布袋除尘器处理后通过 2#15 米高排气简排放。废气排放执行《合成树脂工业污染物排放标准》(GB31572-2015)表 5、表 9 标准以及《大气污染物综合排放标准》(DB32/4041-2021)表 2、表 3 排放限值。
 - 3、落实噪声污染防治措施。优先选用低噪声设备,各噪声源须落实减振隔

声等降噪措施,同时合理布局噪声设备的位置,确保厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准。

- 4、落实固废污染防治措施。按"减量化、资源化、无害化"处理原则,落实各类固体废物的收集、处置和综合利用措施。废活性炭、废催化剂等危险废物委托有资质单位安全处置,转移处置时应按规定办理相关转移手续;模切、裁边产生的边角料回用于生产;废包装材料外售;废布袋、收集粉尘等一般固废委托专业单位综合利用或安全处置的,须执行相关规定:生活垃圾委托环卫部门处置;所有固废零排放。按照《危险废物贮存污染控制标准》(GB18597-2023)和《省生态环境厅关于进一步加强危险废物污染防治工作的实施意见》的相关要求建设危险废物贮存设施;一般固废贮存设施应按《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)要求设置。
- 5、落实土壤及地下水污染防治措施。采取源头控制,项目厂区须实施分区 防渗,落实重点污染防渗区的防渗措施,确保不对土壤和地下水造成影响。
 - 6、落实环境风险防范措施。落实《报告表》提出的环境

风险防范措施,加强运营期环境管理,制定突发环境事件应急预案,防止生产过程中发生环境污染事件,确保环境安全。严格依据标准规范建设环境治理设施,环境治理设施开展安全风险辨识管控,健全内部污染防治设施稳定运行和管理责任制度确保环境治理设施安全、稳定、有效运行。

- 7、按照《江苏省排污口设置及规范化整治管理办法》(苏环控〔1997〕122 号〕的要求,规范化设置各类排污口和标志按《报告表》提出的环境管理与监测 计划实施日常环境管理与监测。
- 三、项目建设过程中,认真组织实施《报告表》及本批复中提出的环境保护措施。污染防治设施必须与主体工程同时设计、同时施工、同时投产使用;在初步设计、施工合同、建设过程中落实防治环境污染和生态破坏的措施。按规定在启动生产设施或者在实际排污之前依法申请排污许可证,对配套建设的环境保护设施进行验收,未经验收或者验收不合格,不得投入生产或者使用。
- 四、该项目建设、运营期间的环境现场监督管理由南京市六合生态环境综合行政执法局负责。

五、本批复自下达之日起,项目的性质、规模、地点、采用的生产工艺或者

防治污染、防止生态破坏的措施发生重大变动的,须重新报批项目的环境影响评价文件。如本五年后方开工建设的,应当报我局重新审核。

3、主要环评建议及环评批复落实情况

本项目于 2023 年 7 月 7 日已取得南京市生态环境局《关于吸塑盒、一体化循环包装箱搬迁扩建项目环境影响报告表的批复》(宁环(六)建〔2023〕21号),主要环评批复落实情况见下表。

表 4-1 环境影响报告主要结论与建议

主要环评批复内容	实际建设情况	是否 落实
落实水污染防治措施。项目排水系统实施雨污分流,设雨污水排口各一个。生活污水经化粪池处理达接管标准后经园区污水管网排入龙袍街道东沟污水处理厂集中处理。	已落实水污染防治措施。项目排水系 统实施雨污分流,设雨污水排口各一个。生活污水经化粪池处理达接管标准后经园区污水管网排入龙袍街道东沟污水处理厂集中处理。	是
落实大气污染防治措施。项目吸塑、注塑工艺产生的有机废气经集气罩收集+活性炭吸附脱附+催化燃烧装置处理后通过1#15米高排气筒排放;破碎粉尘经集气罩收集+布袋除尘器处理后通过2#15米高排气筒排放。废气排放执行《合成树脂工业污染物排放标准》(GB31572-2015)表5、表9标准以及《大气污染物综合排放标准》(DB32/4041-2021)表2、表3排放限值。	已落实大气污染防治措施。项目 吸塑、注塑工艺产生的有机废气 经集气罩收集+活性炭吸附脱附+ 催化燃烧装置处理后通过 15 米 高(DA001)排气筒排放;根据 验收监测数据有机废气排放符合 《合成树脂工业污染物排放标 准》(GB31572-2015)表 5 、表 9 标准,排放限值。 因企业生产建设规划和生产工艺 调整,破碎工序取消,与破碎工 序相关的废气处理设施、破碎设 备均取消。	是
落实噪声污染防治措施。优先选用低噪声设备,各噪声源须落实减振隔声等降噪措施,同时合理布局噪声设备的位置,确保厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准。	已落实噪声污染防治措施。优先 选用低噪声设备,各声源落实减 振隔声等降噪措施,同时合理布 局噪声设备的位置,根据验收监 测数据厂界噪声排放符合《工业 企业厂界环境噪声排放标准》 (GB12348-2008)中3类标准。	是
落实固废污染防治措施。按"减量化、资源化、 无害化"处理原则,落实各类固体废物的收集、 处置和综合利用措施。废活性炭、废催化剂等 危险废物委托有资质单位安全处置,转移处置 时应按规定办理相关转移手续;模切、裁边产 生的边角料回用于生产;废包装材料外售;废 布袋、收集粉尘等一般固废委托专业单位综合 利用或安全处置的,须执行相关规定;生活垃 圾委托环卫部门处置;所有固废零排放。按照 《危险废物贮存污染控制标准》	已落实固废污染防治措施。按"减量化、资源化、无害化"处理原则,落实各类固体废物的收集、处置和综合利用措施。废活性炭、废催化剂等危险废物已签订危废协议,委托有资质单位安全处置,转移处置时应按规定办理相关转移处置时应按规定办理相关转移手续;因企业生产建设规划和生产工艺调整,破碎工序取消,与破碎工序相关的废气处理设	是

(GB18597-2023)和《省生态环境厅关于进一步	施、破碎设备均取消,因此不产	
加强危险废物污染防治工作的实施意见》的相	生废布袋、布袋收集粉尘,模切、	
关要求建设危险废物贮存设施;一般固废贮存	裁边产生的边角料不再破碎回	
设施应按《一般工业固体废物贮存和填埋污染	收,边角料收集后统一外售综合	
控制标准》(GB18599-2020)要求设置。	利用 ,废包装材料外售,生活垃	
1— 1414 1— 1	圾委托环卫部门处置; 所有固废	
	零排放。已按照《危险废物贮存	
	污染控制标准》(GB18597-2023)	
	和《省生态环境厅关于进一步加	
	福	
	意见》的相关要求建设危险废物	
	贮存设施;一般固废贮存设施符	
	合《一般工业固体废物贮存和填	
	埋污染控制标准》	
	CB18599-2020)要求。	
落实土壤及地下水污染防治措施。采取源头控	己落实土壤及地下水污染防治措	
制,项目厂区须实施分区防渗,落实重点污染	施。 采取源头控制,项目厂区实	
防渗区的防渗措施,确保不对土壤和地下水造	施分区防渗,落实重点污染防渗	是
成影响。	区的防渗措施,确保不对土壤和	
	地下水造成影响。	
	已落实环境风险防范措施。落实	
	《报告表》提出的环境风险防范	
 落实环境风险防范措施。落实《报告表》提出	措施,加强运营期环境管理,制	
的环境风险防范措施,加强运营期环境管理,	定突发环境事件应急预案,并取	
制定突发环境事件应急预案,防止生产过程中	得备案(备案号:	
发生环境污染事件,确保环境安全。严格依据	320116-2023-095-L)。已严格	是
标准规范建设环境治理设施,环境治理设施开	依据标准规范建设环境治理设	
展安全风险辨识管控,健全内部污染防治设施	施,环境治理设施开展安全风险	
稳定运行和管理责任制度确保环境治理设施安	辨识管控,健全内部污染防治设	
全、稳定、有效运行。	施稳定运行和管 理责任制度确	
	保环境治理设施安全、稳定、有	
	效运行。	
	已按照《江苏省排污口设置及规	
按照《江苏省排污口设置及规范化整治管理办	范化整治管理办法》(苏环控	
法》(苏环控〔1997〕122号)的要求,规范化	〔1997〕122号)的要求,规范化	
设置各类排污口和标志按《报告表》提出的环	设置各类排污口和标志按《报告	是
境管理与监测计划实施日常环境管理与监测。	表》提出的环境管理与监测计划	
	实施日常环境管理与监测。	
-		

1、废气监测分析质量保证和质量控制

为了确保此次验收监测所得数据的代表性、完整性和准确性,须对监测的全过程(包括布点、采样、样品贮运、实验室分析、数据处理等)进行质量控制。

- (1) 严格按照验收监测方案的要求开展监测工作。
- (2) 合理布设监测点,保证各监测点位布设的科学性和代表性。
- (3) 采样人员严格遵照采样技术规范进行采样工作,认真填写采样记录, 按规定保存、运输样品。
- (4)监测分析采用国家有关部门颁布的标准分析方法或推荐方法;监测人员经考核合格并持证上岗;所有监测仪器、量具均经过计量部门检定合格并在有效期内使用。
- (5) 现场采样和测试,按照国家环保局发布的《环境监测技术规范》和《环境空气监测质量保证手册》的要求进行全过程质量控制。
 - (6) 监测报告严格实行三级审核制度。

2、噪声验收监测质量保证及质量控制

为了确保此次验收监测所得数据的代表性、完整性和准确性,须对监测的全过程(包括布点、采样、样品贮运、实验室分析、数据处理等)进行质量控制。 严格按照验收监测方案的要求开展监测工作。

合理布设监测点,保证各监测点位布设的科学性和代表性。

- (3) 采样人员严格遵照采样技术规范进行采样工作,认真填写采样记录, 按规定保存、运输样品。
 - (4) 及时了解工况情况,确保监测过程中工况负荷满足验收要求。
- (5) 监测分析采用国家有关部门颁布的标准分析方法或推荐方法; 所有监测仪器、量具均经过计量部门检定合格并在有效期内使用。
- (6) 声级计在测试前后用标准发生源进行校准,校准前后仪器的灵敏度相差不大于 0.5dB。声级计校准结果见下表。
 - (7) 监测报告严格实行三级审核制度。

本次验收监测分析方法及仪器设备见下表。

表 5-1 检测仪器设备信息表				
 名称	设备编号			
唠应 3012H 型自动烟尘气测试仪	GCM-884			
ZJL-QB10 负压采气桶	GCM-785			
唠应 3012H 自动烟尘/气测试仪	GCM-610			
ZJL-QB10 负压采气桶	GCM-778			
GC2014C 气相色谱仪	EAA-160			
崂应 3072 智能双路烟气采样器	GCM-823			
唠应 3012H 型自动烟尘气测试仪	GCM-884			
崂应 3072 智能双路烟气采样器	GCM-822			
唠应 3012H 自动烟尘/气测试仪	GCM-610			
GC-2010 气相色谱仪	EAA-99			
QW330 空气采样器	GCM-501			
QW330 空气采样器	GCM-500			
6890N-5975 气质联用色谱仪	EAA-07			
DRY-BOX 真空气袋采样器	GCM-905、GCM-909、GCM-908			
ZJL-QB10 负压采气桶	GCM-778、GCM-785			
PH-SD2 手持式风速风向仪	GCM-346			
HT-6830 测温测湿表	GCM-227-18			
DYM3 型空盒气压表	GCM-082-1			
GC2014C 气相色谱仪	EAA-160			
AWA6022A 声校准器	GCM-340			
AWA5688 多功能声级计	GCM-916			
PH-SD2 手持式风速风向仪	GCM-346			
SD101-0 电热鼓风干燥箱	EAA-52			
PH-SD2 手持式风速风向仪	GCM-346			
HT-6830 测温测湿表	GCM-227-18			
DYM3 型空盒气压表	GCM-082-1			
ADS-2062E 智能综合采样器	GCM-256、GCM-271、GCM-282、 GCM-286			
8860 气相色谱仪	EAA-562			

表 5-2 监测分析方法计量仪器一览表

	分析项目	分析方法	检出限
	非甲烷总 烃	HJ 38-2017 固定污染源废气总烃、甲烷和非甲 烷总烃的测定气相色谱法	0.07mg/m^3
有组织废	丙烯腈	HJ/T 37-1999 固定污染源排气中 丙烯腈的测定气相色谱法	0.2 mg/m 3
有组织版	乙苯 甲苯 苯乙烯	HJ 734-2014 固定污染源废气挥发性有机物的测定固相吸附-热脱附 / 气相色谱-质谱法	0.006mg/m ³ 0.004mg/m ³ 0.004mg/m ³
	1,3-丁二烯	HJ 759-2023 环境空气 65 种挥发性有机物的测定 罐采样/气相色谱-质谱法	$0.5 \mu g/m^3$
无组织废	非甲烷总 烃	HJ604-2017 环境空气总烃、甲烷和非甲烷总 烃的测定 直接进样-气相色谱法	0.07mg/m^3
气	甲苯	HJ 584-2010 环境空气苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法	0.0015mg/m^3

噪声	工业企业	工业企业厂界环境噪声排放标准 GB	,
ペピ	厂界噪声	12348-2008	/

4、监测点位布设、因子、频次

按规范要求合理设置监测点位、确定监测因子与频次,以保证监测数据具有科学性和代表性。

5、人员能力

南京海世达包装有限公司不具备自行监测的能力,验收监测委托江苏国测检测技术有限公司进行。

江苏国测检测技术有限公司在接受委托后派出采样人员于 2025 年 6 月 16 日~17 日到现场进行采样并带回实验室检测,16~17 日采样过程中,检测单位遗漏了无组织甲苯的采样,于 2025 年 7 月 17~18 日到现场进行了补测。检测完成后由编制人员编制完成检测报告。参加本次验收的监测人员均经过考核并持有合格证书,江苏国测检测技术有限公司检验检测机构资质认定证书如下所示。

检验检测机构 **资质认定证书**

编号: 221020340643

名称: 江苏国测检测技术有限公司

地址: 江苏省苏州市昆山市玉山镇晨丰路262号2号房研发楼(215300)

经审查, 你机构已具备国家有关法律、行政法规规定的基本条件和能力, 现予批准。可以向社会出具具有证明作用的数据和结果, 特发此证。资质认定包括检验检测机构计量认证。

检验检测能力及授权签字人见证书附表。

你机构对外出具检验检测报告或证书的法律责任由 江苏国测检测技术有限公司承担。

许可使用标志

本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效。

图 5-1 检测机构资质认定证书

表六

验收监测内容:

1、废气监测

表 6-1 废气监测点位、因子和频次

	监测点位	执行标准	监测项目	浓度限值 (mg/m³)	监测频次	
有组织废	DA001 排气筒进口	《合成树脂工业污染物排放标准》(含	非 甲 烷 总 烃、丙烯腈、 苯乙烯、甲	60	连续2天,	
织废 气 ———	DA001 排气筒出口	单) CD21572 201	苯、乙苯、 1,3-丁二烯		每天3次	
	厂界上风向边界外○1# 厂界下风向边界外○2# 厂界下风向边界外○3# 厂界下风向边界外○4#	《合成树脂工 业污染物排放 标准》(GB	非甲烷总烃	4.0		
无组 织废 气	厂界上风向边界外〇1# 厂界下风向边界外〇2# 厂界下风向边界外〇3# 厂界下风向边界外〇4#	31572-2015, 含 2024 年修 改单)表 9	甲苯	0.8	连续 2 天, 每天 3 次	
	厂房门窗外〇5#	《大气污染物 综合排放标 准》 (DB32/4041- 2021)表2	非甲烷总烃	6		

2、废水监测

表 6-2 废水监测点位、因子和频次

污染种类	测点位置	监测项目	布点个数	监测频次
产 业	厂区污水总	pH、COD、氨氮、SS、TP、	1	4次/天,共2天
废水	排口	TN	1	4 1 0/八,开 2 八

3、噪声监测

表 6-3 噪声监测点位、因子和频次

编号	监测地点	执行标准	监测 项目	噪声 限值	频次(次/ 天)	天 数	点位 数
N1	厂界外东侧1米	 《工业企业厂界环				2	1
N2	厂界外南侧1米	境噪声排放标准》 (GB 12348 -2008)3	噪声	65	连续监测 2 天,昼间 监测 1 次	2	1
N3	厂界外西侧1米		一			2	1
N4	厂界外北侧1米					2	1

图 6-1 检测点位布设图

注: ○G: 无组织检测点; ○ DA001: 排气筒位置,有组织检测位置; ▲N: 噪声检测点; ★W: 废水检测点

验收监测期间生产工况记录:

2025年6月16日~17日,2025年7月17日~18日,江苏国测检测技术有限公司对南京海世达包装有限公司吸塑盒、一体化循环包装箱搬迁扩建项目进行环境保护验收监测,监测期间各项环保治理设施正常运行,对南京海世达包装有限公司吸塑盒、一体化循环包装箱搬迁扩建项目的产品产量进行详细监督检查,监测期间各类环保设施正常运行、工况稳定,符合验收监测要求。

环评设计 环评设计 本期监测期间 产品 生产负荷 时间 年生产量 日生产量 日生产量 吸塑盒 1000 万个 33333 个 27000 个 81% 2025.6.1 一体化循 100 万个 3333 套 2800 套 84% 环包装箱 33333 个 吸塑盒 1000 万个 26800 个 80.4% 2025.6.1 一体化循 100 万个 3333 套 2800 套 84% 环包装箱

表 7-1 验收监测期间工况统计表(1)

表 7-2 验收监测期间工况统计表(3	表 '	7-2 4	給收监	测期间	1工况约	充计表	(3)
---------------------	-----	-------	-----	-----	------	-----	-----

时间	产品	环评设计 年生产量	环评设计 日生产量	本期监测期间 日生产量	生产负荷
2025 7.1	吸塑盒	1000 万个	33333 个	28000 个	84%
2025.7.1	一体化循 环包装箱	100 万个	3333 套	2800 套	84%
2025 7.1	吸塑盒	1000 万个	33333 个	27000 个	81%
2025.7.1	一体化循 环包装箱	100 万个	3333 套	2800 套	84%

验收监测结果:

1、污染物达标排放监测结果

(1) 废气监测结果与评价

有组织废气监测结果

- ①监测日期: 2025年6月16日~17日;
- ②考核标准:有组织废气非甲烷总烃、苯乙烯、丙烯腈、甲苯、乙苯、1,3-丁二烯执行《合成树脂工业污染物排放标准》(GB31572-2015)中表 5 特别排放限值。

表 7-3 有组织废气监测数据汇总表(进口)

测试项目/监测点位	Ĺ	DA	.001 排气筒进口			
采样日期		2025年6月16日				
监测项目	单位	第一次	第二次	第三次		

個点裁画科 m² 0.126 0.126 0.126 担合議画技 空 23.8 23.6 23.9 担合議連 m/h 4901 5174 5259 13.2 担合議連 m/h 4901 5174 5259 13.2 担合議連 m/h 4901 5174 5259 13.4 1.40 1.36 排放速率 kg/h 6.57×10⁻3 7.24×10⁻3 7.15×10⁻3 7.10×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.10×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.10×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.15×10⁻3 7.10×10·										
#日院意経 m/s 12.3 12.9 13.2 関写(流達 m²/h 4901 5174 5259	烟	道截面积			m^2		0.126	0.126	0.1	26
#甲烷总烃	片	因气温度			°C		23.8	23.6	23	.9
#旧焼息烃 疾側液度 mg/m³ 1.34 1.40 1.36	坎	因气流速		1	m/s		12.3	12.9	13	.2
# 中	火	因气流量		r	n ³ /h		4901	5174	525	59
特別速率 kg/h C.5/×10 ⁻³ 7.24×10 ⁻³ 7.15×10 ⁻³ 7.15×10 ⁻³ 2.90×10 ⁻³ 1.18×10 ⁻³ 1.18×10 ⁻³ 2.90×10 ⁻³ 1.18×10 ⁻³ 1.19×10 ⁻³ 1.18×10 ⁻³ 1.18×10 ⁻³ 1.19×10 ⁻³ 1.25×10 ⁻³	11:日冷2:1	实则沟		m	g/m ³	n ³ 1.34		1.40	1.36	
排放速率 kg/h	非甲烷总统	排放逐	車率	k	cg/h	6.5	57×10 ⁻³	7.24×10 ⁻³	7.15×	10-3
推放速率 kg/h	五烃柱	实测剂	欠度	m	g/m ³		ND	ND	NI)
# 大	内净朋	排放逐	車率	k	cg/h	/		/	/	
中本 実測浓度 mg/m³ 0.009 0.009 0.011	++ -> l×	实测剂	欠度	m	g/m ³	(0.007	0.006	0.0	08
排放速率 kg/h 4×10 ⁻³ 5×10 ⁻³ 5.8×10 ⁻³ 5.8×10 ⁻³ 大変 疾測液度 mg/m ³ ND ND ND ND ND ND ND N	本厶烯	排放逐	車率	k	cg/h	3	3×10 ⁻⁵	3×10 ⁻⁵	4×1	0-5
大大	ш₩	实测浓度		m	g/m ³		0.009	0.009	0.0	11
大工工術 排放速率 (支) kg/h (mg/m³) // (mg/m²) // (mg/m²) 1,3-丁二烯 排放速率 (支) kg/h (mg/m²) // (mg/m²) ND N	甲本	排放逐	車率	k	kg/h	4	l×10⁻⁵	5×10 ⁻⁵	5.8×	10-5
1,3-丁二烯	マサ	实测剂		m	g/m ³		ND	ND	NI)
	乙本	排放逐	車率	k	cg/h		/	/	/	
押放速率 Rgfn	127-10	× 实测剂		m	g/m ³		ND	ND	NI)
R#日期 P 位 第一次 第二次 第三次 期道截面积 m² 0.126 0.128 0.12	1,3-] 二烷	排放逐	車率	k	cg/h		/	/	/	
监测项目 单位 第一次 第三次 烟道截面积 m² 0.126 0.126 0.126 烟气温度 °C 22.8 22.9 23.1 烟气流速 m³/h 5386 5399 5368 非印烷总烃 实测浓度 mg/m³ 2.51 2.53 2.58 非放速率 kg/h 1.35×10-2 1.37×10-2 1.38×10-2 丙烯腈 排放速率 kg/h / / / 本乙烯 排放速率 kg/h / / / 本乙烯 排放速率 kg/h 4×10-5 4×10-5 3×10-5 要测浓度 mg/m³ 0.007 0.008 0.006 非放速率 kg/h 4×10-5 4×10-5 3×10-5 要测浓度 mg/m³ 0.011 0.011 0.010 工業 東澳洲浓度 mg/m³ ND ND ND ND ND ND ND ND ND 1,3-1-1-5 非放速率 kg/h 5.9×10-5 5.9×10-5		测试项目/监	测点位				DA	001 排气筒出	П	
烟道截面积 m² 0.126 0.126 0.126 Ma		采样日	 期				202	5年6月17日	3	
烟气温度 °C 22.8 22.9 23.1 烟气流速 m/s 13.4 13.4 12.8 烟气流量 m³/h 5386 5399 5368 非甲烷总烃 実測浓度 mg/m³ 2.51 2.53 2.58 排放速率 kg/h 1.35×10-2 1.37×10-2 1.38×10-2 丙烯腈 安测浓度 mg/m³ ND	ij			Ē	单位	5	有一次	第二次	第三	次
関令流速 m/s 13.4 13.4 12.8 関令流量 m³/h 5386 5399 5368 非甲烷总烃					m ²		0.126	0.126	0.1	26
押用	火	因气温度			°C		22.8	22.9	23. 1	
非印烷总烃 实测浓度 mg/m³ 2.51 2.53 2.58 排放速率 kg/h 1.35×10-2 1.37×10-2 1.38×10-2 丙烯腈 实测浓度 mg/m³ ND ND ND 本乙烯 实测浓度 mg/m³ 0.007 0.008 0.006 排放速率 kg/h 4×10-5 4×10-5 3×10-5 中本 实测浓度 mg/m³ 0.011 0.011 0.010 排放速率 kg/h 5.9×10-5 5.9×10-5 5.4×10-5 乙苯 实测浓度 mg/m³ ND ND ND 1,3-丁二烯 实测浓度 mg/m³ ND ND ND ND 排放速率 kg/h /				1	m/s		13.4	13.4	12	.8
# 中	火	因气流量		r	n ³ /h		5386			58
	北田岭谷	实则 注	农度	m	g/m ³		2.51	2.53	2.5	8
排放速率 kg/h	非甲烷总	排放注	東率	k	cg/h	1.3	35×10 ⁻²	1.37× 10 ⁻²	1.38×	10-2
排放速率 kg/h	五烃硅	实测剂	农度	mg/m ³			ND	ND	NI)
# 大	内净用	排放注	東率			/		/	/ /	
押放速率 kg/h 4×10 ⁻³ 4×10 ⁻³ 3×10 ⁻³ 3×10 ⁻³ 2 2 2 2 2 2 2 4 4 4	せっ 烃	实测剂	农度			0.007		0.008	0.008 0.006	
押本	本乙烯	排放证	東率	k	cg/h	4	l×10⁻⁵	4×10 ⁻⁵	3×1	0-5
大大 大大 大大 大大 1,3-丁二烯 字测浓度 mg/m³ kg/h ND N	田士	实测剂	农度	m	g/m ³	(0.011	0.011	0.0	10
上海 上海 上海 上海 上海 上海 上海 上海	中本	排放证	東率	k	cg/h	5.	9×10 ⁻⁵	5.9×10 ⁻⁵	5.4×	10-5
1,3-丁二烯 採房/h / ND ND ND ND ND 表 7-4 有组织废气监测数据汇总表 (出口) 测试项目/监测点位 DA001 排气筒出口 采样日期 2025 年 6 月 16 日 监测项目 单位 第一次 第三次 标准 烟道截面积 m² 0.196 0.196 0.1050 — / 烟气温度 °C 23.5 22.1 23.4 — / 烟气流速 m/s 7.8 8.0 8.4 — / 烟气流速 m/s 7.8 8.0 8.4 — / 烟气流量 m³/h 4848 4992 5248 — / 非甲烷总 实测浓度 mg/m³ 1.18 1.19 1.19 60 达标 反播 实测浓度 mg/m³ ND ND ND ND 0.5 达标	フ生	实测剂	农度	m	g/m ³		ND	ND	NI)
1,3- J 一牌 排放速率 kg/h / 表 7-4 有组织废气监测数据汇总表 (出口) 测试项目/监测点位 DA001 排气筒出口 采样日期 2025 年 6 月 16 日 监测项目 单位 第一次 第三次 烟道截面积 m² 0.196 0.196 0.1050 - 烟气温度 °C 23.5 22.1 23.4 - / 烟气流速 m/s 7.8 8.0 8.4 - / 烟气流速 m³/h 4848 4992 5248 - / 排甲烷总 实测浓度 mg/m³ 1.18 1.19 1.19 60 达标 上甲烷总 实测浓度 kg/h 5.72×10-3 5.94×10-3 6.25×10-3 - / 丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标	乙本	排放注	東率	k	cg/h		/	/	/	
接g/h 表 7-4 有组织废气监测数据汇总表(出口) 测试项目/监测点位 DA001 排气筒出口 采样日期 2025 年 6 月 16 日 监测项目 单位 第一次 第二次 烟道截面积 m² 0.196 0.196 0.1050 — 烟气温度 °C 23.5 22.1 23.4 — / 烟气流速 m/s 7.8 8.0 8.4 — / 烟气流速 m³/h 4848 4992 5248 — / 排戶流量 mg/m³ 1.18 1.19 1.19 60 达标 上甲烷总 实测浓度 mg/m³ 5.72×10-3 5.94×10-3 6.25×10-3 — / 丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标	12 7-1	实测剂	农度	m	g/m ³		ND	ND	NI)
測试项目/监测点位 DA001 排气筒出口 评价标准 达标情况 采样日期 2025 年 6 月 16 日 评价标准 达标情况 监测项目 单位 第一次 第三次 第三次 情况 烟道截面积 m² 0.196 0.196 0.1050 — / 烟气温度 °C 23.5 22.1 23.4 — / 烟气流速 m/s 7.8 8.0 8.4 — / 烟气流速 m³/h 4848 4992 5248 — / 非甲烷总 实测浓度 mg/m³ 1.18 1.19 1.19 60 达标 反 排放速率 kg/h 5.72×10¬³ 5.94×10¬³ 6.25×10¬³ — / 丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标	1,3-]/	排放注	東率	k	kg/h		/	/	/	
測试项目/监测点位 DA001 排气筒出口 评价标准 达标情况 采样日期 2025 年 6 月 16 日 评价标准 达标情况 幽道截面积 单位 第一次 第三次 / 烟气温度 °C 23.5 22.1 23.4 - / 烟气流速 m/s 7.8 8.0 8.4 - / 烟气流速 m³/h 4848 4992 5248 - / 排門院总 实测浓度 mg/m³ 1.18 1.19 1.19 60 达标 压力 排放速率 kg/h 5.72×10-3 5.94×10-3 6.25×10-3 - / 丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标		表 7	-4 有组	织	麦气 监	测数技		(出口)		
采样日期 2025 年 6 月 16 日 评价 标准 监测项目 单位 第一次 第二次 第三次 烟道截面积 m² 0.196 0.196 0.1050 — 烟气温度 °C 23.5 22.1 23.4 — / 烟气流速 m/s 7.8 8.0 8.4 — / 烟气流速 m³/h 4848 4992 5248 — / 排戶戶戶 实测浓度 mg/m³ 1.18 1.19 1.19 60 达标 上 排放速率 kg/h 5.72×10⁻³ 5.94×10⁻³ 6.25×10⁻³ — / 丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标	测试			1-7 17	× (
监测项目 单位 第一次 第三次 标准 情况 烟道截面积 m² 0.196 0.196 0.1050 — / 烟气温度 °C 23.5 22.1 23.4 — / 烟气流速 m/s 7.8 8.0 8.4 — / 烟气流速 m³/h 4848 4992 5248 — / 排甲烷总 实测浓度 mg/m³ 1.18 1.19 1.19 60 达标 烃 排放速率 kg/h 5.72×10-³ 5.94×10-³ 6.25×10-³ — / 丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标	N4 K		,					· ·		
烟道截面积 m² 0.196 0.196 0.1050 — / 烟气温度 ℃ 23.5 22.1 23.4 — / 烟气流速 m/s 7.8 8.0 8.4 — / 烟气流速 m³/h 4848 4992 5248 — / 非甲烷总 实测浓度 mg/m³ 1.18 1.19 1.19 60 达标 烃 排放速率 kg/h 5.72×10⁻³ 5.94×10⁻³ 6.25×10⁻³ — / 丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标			单位	-	———— 第一				标准	情况
烟气温度 °C 23.5 22.1 23.4 - / 烟气流速 m/s 7.8 8.0 8.4 - / 烟气流速 m³/h 4848 4992 5248 - / 非甲烷总 实测浓度 mg/m³ 1.18 1.19 1.19 60 达标 烃 排放速率 kg/h 5.72×10⁻³ 5.94×10⁻³ 6.25×10⁻³ - / 丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标						-		+	_	/
烟气流量 m³/h 4848 4992 5248 — / 非甲烷总 实测浓度 mg/m³ 1.18 1.19 1.19 60 达标 烃 排放速率 kg/h 5.72×10-³ 5.94×10-³ 6.25×10-³ — / 丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标									_	/
非甲烷总 实测浓度 mg/m³ 1.18 1.19 1.19 60 达标 烃 排放速率 kg/h 5.72×10⁻³ 5.94×10⁻³ 6.25×10⁻³ — / 丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标	烟气	流速	m/s		7.8	3	8.0	8.4	_	/
烃 排放速率 kg/h 5.72×10 ⁻³ 5.94×10 ⁻³ 6.25×10 ⁻³ — / 安測浓度 mg/m³ ND ND ND ND 0.5 达标	烟气	流量	m ³ /h	1	484	8	4992	5248		
丙烯腈 实测浓度 mg/m³ ND ND ND 0.5 达标	非甲烷总	实测浓度	mg/m	\mathbf{n}^3	1.1	8	1.19	1.19	60	达标
N.海	烃	排放速率	kg/h	ı	5.72×	10^{-3}	5.94×10 ⁻³	6.25×10^{-3}		/
排放速率 kg/h	万怪時	实测浓度	mg/m	\mathbf{n}^3	NE)	ND	ND	0.5	达标
	ዘር ជነላ ሲለ	排放速率	kg/h	1	/		/	/		/

サフド	实测浓度	mg/m ³	ND	ND	ND	20	达标
苯乙烯	排放速率	kg/h	/	/	/	_	/
ш-#-	实测浓度	mg/m ³	ND	ND	ND	8	达标
甲苯	排放速率	kg/h	/	/	/	_	/
	实测浓度	mg/m ³	ND	ND	ND	50	达标
乙苯	排放速率	kg/h	/	/	/		/
1 2 T - 1×	实测浓度	mg/m ³	ND	ND	ND	1	达标
1,3-丁二烯	排放速率	kg/h	/	/	/	_	/
测试	项目/监测点	位	DAG	001 排气筒出	iП) W (A	71-1=
-	采样日期		202	5年6月17	日	评价	达标
监测	项目	单位	第一次	第二次	第三次	标准	情况
烟道截面积		m ²	0.196	0.196	0.196	_	/
烟气	烟气温度		21.7	22.6	23.3	_	/
烟气	烟气流速		8.2	8.4	8.4	_	/
烟气	流量	m ³ /h	5220	5299	5270	_	/
非甲烷总	实测浓度	mg/m ³	1.71	1.66	1.47	60	达标
烃	排放速率	kg/h	8.93×10 ⁻³	8.80×10 ⁻³	7.75×10 ⁻³	_	/
 丙烯腈	实测浓度	mg/m ³	ND	ND	ND	0.5	达标
內角用	排放速率	kg/h	/	/	/	_	/
サフ 経	实测浓度	mg/m ³	ND	ND	0.004	20	达标
苯乙烯	排放速率	kg/h	/	/	2×10 ⁻⁵	_	/
田士	实测浓度	mg/m ³	ND	ND	0.005	8	达标
甲苯	排放速率	kg/h	/	/	3×10 ⁻⁵		/
 乙苯	实测浓度	mg/m ³	ND	ND	ND	50	达标
4	排放速率	kg/h	/	/	/		/
12丁一烃	实测浓度	mg/m ³	ND	ND	ND	1	达标
1,3-丁二烯	排放速率	kg/h	/	/	/	_	/

表 7-4 有组织废气监测结果表明:

有组织废气排口 DA001 排气筒出口废气污染物: 非甲烷总烃、苯乙烯、丙烯腈、甲苯、乙苯、1,3-丁二烯满足《合成树脂工业污染物排放标准》(GB31572-2015)中表 5 特别排放限值。单位产品 NMHC 排放量为: 0.013t/a ÷5t=0.0026mg/m³, (本次验收期间平均产品产能共为 29700 个,约为 5t)满足《合成树脂工业污染物排放标准》(GB31572-2015)中表 5 特别排放限值。

无组织废气监测结果

- ①监测日期: 2025年6月16日~17日、2025年7月17~7月18日;
- ②考核标准: 无组织废气执行《合成树脂工业污染物排放标准》(GB 31572-2015,含 2024 年修改单)表 9 中无组织标准值。其中厂区内非甲烷总烃 无组织排放执行《大气污染物综合排放标准》(DB 32/4041-2021)中表 2 的限值标准。

			₹ 7-5 气	象参数汇点	总表					
监测	日期	监测点位		风速(m/s)) 风向	气温(℃)	气压	(kPa)		
		厂界上风向(G1							
	H	厂界下风向(G2							
2025 年 16		厂界下风向(G 3	2.6	北	31.7	100			
10	Н	厂界下风向(G4							
		厂房外 1mG	5							
		厂界上风向(G1							
	H	厂界下风向(G2							
2025 年 17		厂界下风向(G 3	2.4	北	32.9	10	0.4		
1 /	Н	厂界下风向(G4							
		厂房外 1mG	5							
		厂界上风向(
2025 至		厂界下风向(2.4	北	33.7	1	00		
1/	17日									
		厂界上风向(
2025 至	2025 年 7 月		三7月 厂界下风向 (2.5	北	31.4	10	0.2
18				2.3	14	31.4	10	0.2		
		厂界下风向(加克与ル湖						
Mar. Nest		衣 /-6)		织废气监测			\ ##	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
监测 日期		监测点位	测试 项目	第一次	结果(mg/ 第二次	第三次	评价 标准	达标 情况		
			77.11	0.74	0.75	0.75	,,,,,	 达标		
2025		界下风向 G2		0.86	0.86	0.86		送标		
年6		界下风向 G3	非甲 烷总 烃	0.89	0.88	0.89	4.0	达标		
月 16 日		界下风向 G4		0.89	0.83	0.86		达标		
				0.91	0.84	0.89	6.0	达标		
		界上风向 G1		0.75	0.74	0.74	0.0	达标		
2025		界下风向 G2	非甲	0.89	0.94	0.97				
年6		界下风向 G3	烷总	0.92	0.93	0.91	4.0	达标		
月 17	,	界下风向 G4	烃	0.84	0.95	0.84		达标		
			-	0.86	0.93	0.94	6.0	达标		
	,		 界无组	」 织废气监测						
 监测			测试		结果(mg/			 达标		
日期		监测点位	项目	第一次	第二次	第三次	标准	情况		
2025	厂	7界上风向 G1		ND	ND	ND		达标		
年7	厂	界下风向 G2		ND	ND	ND	0.0	达标		
月 17	厂	界下风向 G3	甲苯	ND	ND	ND	0.8	达标		
日日	厂	界下风向 G4	1	ND	ND	ND		达标		
2025	厂	界上风向 G1	甲苯	ND	ND	ND	0.8	达标		

年 7	厂界下风向 G2	ND	ND	ND	达标
月 18 日	厂界下风向 G3	ND	ND	ND	达标
	厂界下风向 G4	ND	ND	ND	达标

由验收监测结果表 7-6、7-7 表明:

无组织非甲烷总烃、甲苯浓度符合《合成树脂工业污染物排放标准》(GB 31572-2015,含 2024 年修改单)表 9 中无组织标准值。其中厂区非甲烷总烃无组织排放符合《大气污染物综合排放标准》(DB 32/4041-2021)中表 2 的限值标准。

(2) 废水监测结果与评价

①监测日期: 2025年6月16日~17日;

②考核标准:东沟污水处理厂接管标准。

表 7-8 废水监测数据汇总表

 - 采样日期	采样时间		检测项目(单位:mg/L,pH 无量纲)									
木件口朔 	木件 的问	pН	化学需氧量	总氮	氨氮	总磷	悬浮物					
	第一次	7.1	217	11.8	7.16	1.01	96					
2025年6	第二次	7.0	186	10.6	4.85	0.92	91					
月 16 日	第三次	7.0	198	28.4	26.5	2.30	84					
	第四次	7.0	208	62.1	43.0	6.03	159					
	第一次	7.1	223	44.8	36.5	3.75	142					
2025年6	第二次	7.1	226	18.7	15.7	1.49	102					
月 17 日	第三次	7.1	219	7.44	3.07	0.65	97					
	第四次	7.0	210	12.0	7.67	0.74	93					
评位	介标准	6-9	500	70	45	8	400					
	示情况	达标	达标	达标	达标	达标	达标					

由验收监测结果表 7-8 表明:

废水中 COD、SS、氨氮、总氮、总磷排放浓度及 pH 值均满足东沟污水处理厂接管标准。

(3) 噪声监测结果与评价

①监测日期: 2025年6月16日~17日;

②考核标准: 厂界噪声排放执行《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准。

表 7-9 项目噪声监测结果 单位: dB(A)

日	测点	监测点	监测	11次河山井 15日	主要	监测	74.W	
期	编号	位置	时间	监测时间	声源	噪声值	标准值	评价
202	N1	北厂界外 1m	昼间	13 10	设备	53	(5	达标
5年	N2	西厂界外 1m	生间		风机	58	65	达标

	N3	南厂界外 1m			设备	54		达标
	N4	东厂界外 1m			以留	56		达标
202	N1	北厂界外 1m			设备	51		达标
5年 6月	N2	西厂界外 1m	 昼间	14 时 10 分至	风机	57	(5	达标
17	N3	南厂界外 1m	生间	14 时 38 分	设备	55	65	达标
日	N4	东厂界外 1m			以金	53		达标

表 7-9 噪声监测结果表明:

本项目厂界 N1、N2、N3、N4 监测点等效声级为: 昼间 51-58dB(A),噪声符合《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准要求。

(4) 污染物排放总量核算

①废气:

本项目废气排放总量核定见下表。

表 7-10 污染物排放总量核定表

类别	污染物	实际排放量(t/a)	批复考核量(t/a)	是否符合控制要求		
废气	VOCs	0.013	0.0176	符合		

注: VOCs 包含非甲烷总烃、苯乙烯、丙烯腈、甲苯、乙苯、1,3-丁二烯。

本项目产生的废气主要有生产过程中产生的 VOCs(包含非甲烷总烃、苯乙烯、丙烯腈、甲苯、乙苯、1,3-丁二烯)。总量控制因子为 VOCs。根据检测结果,VOCs 的排放量为: 0.013t/a,未超过环评批复总量,符合环评中的总量控制指标要求。

②废水:

本项目废水排放总量核定见下表。

表 7-11 废水总量核定表

类别	污染物名称	排水名 称	接管浓度 (mg/L)	废水量 (t/a)	核算总量 (t/a)	环评设计总 量(t/a)	是否符 合
	化学需氧量		500		0.242	0.34	符合
	悬浮物		400	1147.5	0.124	0.29	符合
废水	氨氮	废水总 排口	45		0.021	0.037	符合
	总磷	J " —	8		0.002	0.005	符合
	总氮		70		0.028	0.051	符合

废水总量核定结果表明: 污水接管量: 1147.5t/a, COD: 0.242t/a、SS: 0.124t/a、 氨氮: 0.021t/a、总磷: 0.002t/a、总氮: 0.028t/a, 均小于环评批复的排放量,符 合总量控制要求。

③本项目所有固废均进行无害化处理处置,	固废外排量为零。

验收监测结论:

1、结论

南京海世达包装有限公司位于江苏省南京市六合区南京四桥经济园府前南路,建设吸塑盒、一体化循环包装箱搬迁扩建项目。该项目已取得南京市六合区发展和改革委员会备案证,备案号: 六发改备〔2023〕188号。产品主要为吸塑盒和一体化循环包装箱。南京海世达包装有限公司实际投资 2000万元,其中实际环保投资 40 万元。

2025年6月16日~17日、2025年7月17~7月18日验收监测期间,该项目生产设施以及环保设施均处于正常运行状态,满足竣工验收对工况的要求。监测结果表明:

①生产工况

验收期间,项目主体工程工况稳定、环境保护设施运行正常,符合验收指南中监测技术要求。

②废气

本项目营运期产生的 VOCs 执行《合成树脂工业污染物排放标准》 (GB31572-2015) 中表 5 特别排放限值; 厂区内厂房外非甲烷总烃无组织排放最高允许限值执行《大气污染物综合排放标准》 (DB32/4041-2021) 中的表 2限值。

③废水

本项目废水经东沟污水处理厂处理达《城镇污水处理厂污染物排放标准》 (GB 18918-2002)中一级标准中 A 标准后排入新禹河,最终汇入滁河。本项目 废水总排口执行东沟污水处理厂接管标准。

4)噪声

本项目厂界 N1、N2、N3、N4 监测点的噪声符合《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准要求。

⑤固废

本项目产生的废活性炭、废催化剂收集后定期委托有资质单位进行处置。一般固废包括边角料、废布袋、布袋收集粉尘、废包装材料均外售;生活垃圾委托环卫部门清运。固废均不外排。

综上所述,本项目建设符合区域的产业定位,符合当地总体规划;已按照国家有关建设项目环境管理法律法规要求,进行了环境影响评价等手续,较好的执行了"三同时"制度,并建立了比较完善的环境管理和职责分明的环境管理制度。验收监测期间,项目所测各类污染物排放浓度均符合相关标准,建设内容符合环评报告表与环评批复中的要求,符合验收条件,未出现《建设项目竣工环境保护验收暂行办法》中所规定的验收不合格情形,建议通过"三同时"竣工环境保护验收。

2、建议

加强环境管理,加强对各类环保处理设施的运行、维护和管理,确保各类环保处理设施长期稳定运行、各类污染物达标排放。

表九、建设项目竣工环境保护"三同时"验收登记表

建设项目竣工环境保护"三同时"验收登记表

填表单位(盖章): 南京海世达包装有限公司

填表人(签字):

项目经办人(签字):

	项目名称	吸塑盒、一体化循环包装箱搬迁扩建项目					项目代码	3	2212-3	20116 6537	5-07-02-5 9	建设地	点		京四桥经济园府前 南路
	行业类别(分类管理名录)	C2926 塑料包装箱及容器制造				建设性质			□新建 ☑改扩建 □技术改造					项目厂区中心 经度/纬度	118°52′3.325″ 32°9 ′40.153″
	设计生产能力	年产 1000 万个吸塑盒、100 万套一体化循环包 装箱				实际生产能		. ,		塑盒、100 万套 「包装箱	环评单	位	江苏久之源环	境科技有限公司	
	环评文件审批机关	南京市生态环境局					审批文号	}	宁环 (六	:)建[[2023]21 号	环评文件	类型	建设项目环	境影响报告表
建设项目	开工日期		2023 年	8月			竣工日期	月	20	25 年	5月	排污许可证申	9领时间	202	4.03.06
	环保设施设计单位	武邑洁雅森环保设		设备有限么	环保设施施		二单位	武邑洁雅森环保设备 有限公司		本工程排污的 号	F可证编	9132011659351777620022			
	验收单位	南京海世达包装有限公		支有限公司	司	:	环保设施监测	单位	江苏国测村	金测 技	技术有限公司	验收监测时	丁况	生产设施、环	保设施正常运行
	投资总概算(万元)	2000			环保投资总概算(万元)			50		所占比例	(%)		2.5		
	实际总投资	2000			实	实际环保投资(万元)		40		所占比例(%)			2.0		
	废水治理(万 元)	废气治	理 (万	36	噪声治理()	万元)	2	固体废物)治理 (万 ;)	2	绿化及生	态 (万元)	/	其他 (万元)	/
	新增废水处理设施能力		/			新增废气处理设施能力			/		年平均工作时		2	2400	
	运营单位	南京海世达包装有限公司 运营单位社		L会统一信用代码(或组织机构 代码)		913201165935177762		验收时间		2025年6月					
污染物排	污染物	原有排放量(1)	本期工程实 际排放浓度 (2)	本期工利 许排放》 (3)	农度 平朔- 七	L程产 (4)	本期工程 自身削减 量(5)	本期工程实际排放量(6		《疋	本期工程"以新 带老"削减量 (8)	全厂实际排 放总量(9)	全厂核定 放总量 (
放达	废水	/	/	/		/	/	0.1147	0.1147		/	0.1147	0.1147	7 /	/
标与总量	化学需氧量	/	/	/		/	/	0.242	0.34		/	0.34	0.34	/	/
控制	悬浮物	/	/	/		/	/	0.124	0.29		/	0.29	0.29	/	/
业 建 (工	氨氮	/	/	/	,	/	/	0.021	0.037		/	0.037	0.037	/	/
设项	总磷	/	/	/		/	/	0.002	0.005		/	0.005	0.005	/	/
目详 填)	总氮	/	/	/	,	/	/	0.028	0.051		/	0.051	0.051	/	/
	VOCs	/	/	/		/	/	0.013	0.0176		/	0.0174	0.0176	5 /	/

工业固体废物	/	/	/	/	/	/	/	/	/	/	/	/
与项目有关的 / 其他特征污染	/	/	/	/	/	/	/	/	/	/	/	/
物	/	/	/	/	/	/	/	/	/	/	/	/

注: 1、排放增减量: (+)表示增加, (-)表示减少。2、 (12)= (6)- (8)- (11), (9) = (4)- (5)- (8)- (11)+ (1)。3、计量单位: 废水排放量——万吨/年; 废气排放量——万标立方米/年; 工业 固体废物排放量——万吨/年; 水污染物排放浓度——毫克/升

附图:

附图 1项目地理位置图

附图 2项目周边情况图

附图3变动前项目平面布置图

附图 4 变动后项目平面布置图

附件:

附件1 环评批复

附件 2 突发环境事件应急预案备案表

附件 3 工况说明材料

附件 4 危废处置协议

附件 5 江苏国测检测技术有限公司检测报告

附件 6 情况说明

附件7一般变动环境影响分析